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Abstract

An important inverse problem in the field of acoustics is that of reconstructing the strengths of a number
of sources given a model of transmission paths from the sources to a number of sensors at which
measurements are made. In dealing with this kind of the acoustical inverse problem, the strength of the
discretized source distribution can be simply deduced from the measured pressure field and the inversion of
corresponding matrix of frequency response functions. Hence, the accuracy of reconstruction of the source
strength is crucially dependent on the conditioning of the matrix to be inverted. However, the problem of
reconstructing acoustic source distributions from field measurement is very often ill-posed. In such cases, by
using only the simple least-squares method, one cannot ensure a successful reconstruction of the acoustic
source strength distribution. Therefore, Tikhonov regularisation is widely employed in order to produce
reasonable solutions. However, determination of the amount of regularisation is not straightforward in
practical applications without prior knowledge of either the strength of the acoustic sources or the
contaminating measurement noise. Thus, two methods have been introduced, Generalised Cross Validation
(GCV) and the L-curve method, which do not require prior information in order to determine the optimal
regularisation parameter. In the present work, the abilities of the two methods are illustrated when these
kinds of inverse sound radiation problems are dealt with using Tikhonov regularisation. Finally, through
experimental demonstrations, some guidelines are proposed for determining the optimal degree of
regularisation.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The reconstruction of acoustic source strength is important in order to provide understanding
of source characteristics, such as source locations, source strengths and interactions between the
sources. Such research has also been conducted with the purpose of the specification of the sound
radiation process, appropriate noise control measures and the ranking of the contribution of
multiple sources. The general objective is to establish these parameters in order to improve
acoustic quality. Therefore, the study of acoustical inverse problems, a relatively new branch of
the field of acoustics, is of considerable importance. In order to deal with this kind of acoustical
inverse problem, a general formulation provided by Singular Value Decomposition (SVD) was
introduced by Veronesi and Maynard [1]. The applicability of the SVD was subsequently
investigated by a number of authors [2–6] and recent approaches have seen based on expressing
the field at a number of discrete points in terms of the discrete points of the source distribution. In
particular, the SVD can give an insight into the spatial resolution of the reconstructed source
strength [6–8].

The work presented in Refs. [4–8] shows that the ill-conditioning of the matrix to be inverted
can very often result in an ill-posed problem and this can be interpreted in terms of the small
singular values which often specify the high spatial frequencies in the acoustic source distribution.
However, in Refs. [7–9], particular conditions have been shown to lead to the acoustical inverse
problem becoming optimally conditioned. These involve measurements undertaken in the near
field as close as possible to the source or arranging the source and farfield data in a manner that
results in the discrete farfield data and the source distribution constituting a Discrete Fourier
Transform (DFT) relationship. The DFT relationship has the least sensitivity to errors of various
kinds. Therefore, imaging from farfield measurements may be assisted greatly by the adoption of
these optimally spaced sensors and sources.

However, in real-world applications, it sometimes is not so easy to realise the DFT relationship.
Otherwise, when the sensor array is placed close to the source surface, the acoustic pressures at
measurement positions may be modified by scattering, reflection or resonance caused by the small
gap between the source surface and the sensor array. Furthermore, contamination of various
kinds of errors in the measurements is inevitable. In such cases, in spite of the optimal
arrangements of the sensors and sources, acoustical inverse problems often become ill-posed.
Therefore, numerical procedures, which are called regularisation, are often imposed to produce
reasonable solutions to the discrete ill-posed problems [4,6,8,10–14]. In such cases, the success of
regularisation depends on the appropriate choice of the regularisation parameter. But, it is very
difficult to determine the proper amount of regularisation without prior knowledge of either the
acoustic sources or the contaminating measurement noise. Due to this difficulty, two methods,
Generalised Cross Validation (GCV) [15–17] and the L-curve method [18–20], have been
introduced. Neither of these methods requires prior information of either the source distribution
to be reconstructed or the contaminating errors.

However, as shown in Refs. [7,8], the regularisation process may affect the spatial resolution of
source reconstruction since the regularisation process also is closely connected with the small
singular values associated with high spatial frequencies in the source distribution. Hence, useful
information about the acoustic sources can be well resolved when the degree of the regularisation
is appropriately determined. In other words, if excessive regularisation is imposed then both
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resolution and estimation accuracy are considerably decreased. Therefore, it is important to be
able to choose the right degree of regularisation when constructing an optimal estimate of the
acoustic source distribution. However, clear guidelines for the right choice of regularisation
parameter-determination methods have not yet been provided in dealing with acoustical inverse
problems.

In this paper, the basic formulation of Tikhonov regularisation [21,22] is firstly described and
an attempt is made to connect the use of the SVD to the regularisation process including the
determination of regularisation parameters. In order to investigate the effect of the degree of
regularisation on spatial resolution and accuracy, this paper presents an evaluation of the relative
merits of GCV and the L-curve method. The abilities of the methods are illustrated when a range
of inverse sound radiation problems are treated using well-known Tikhonov regularisation. This
is investigated by exploring the relationship between estimation accuracy, noise level, and source
and sensor geometry. This will enable practical guidelines to be proposed for determining the
optimal regularisation parameter that is capable of producing the best possible spatial resolution
of acoustic sources. Finally, some experimental results are presented when a volume velocity
source distribution is reconstructed from farfield data with regularisation parameters provided by
the two different methods.

2. Least-squares estimation and Tikhonov regularisation

2.1. Simple least-squares estimation

When a real source is modelled by N discrete acoustic sources, acoustic pressures measured at
the same number of discrete field points as the modelled sources can be represented by using a
frequency response function matrix G relating the model acoustic pressures p to the model
complex source strengths q: However, in practice contaminating errors of various kinds are
inevitable. These errors include noise due to measurement contamination of complex acoustic
pressures and errors involved in the model representation of the real acoustic source distribution.
Hence, it is assumed that the difference between the model pressure p and the measured pressures
#p can be expressed as the vector of complex errors given by e ¼ #p� p: Therefore, the measured
acoustic pressures #p at the discrete field points can be expressed by

#p ¼ Gqþ e; ð1Þ

where #p denotes the N-dimensional complex vector of the measured acoustic pressures and q

represents the N-dimensional complex vector of the acoustic source strengths assumed. The
estimate of the model source strength vector q is deduced by minimising the error criterion is
defined by

J ¼ jjejj2 ¼ jjGq� #pjj2; ð2Þ

where jj jj denotes the 2-norm. The least-squares estimation of the acoustic source strengths q is
given by [4–8]

q ¼ G�1 #p; ð3Þ

where the matrix G is assumed to be square.
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In many practical cases, there is no unique solution to this equation, even if a solution exists,
due to the presence of very small elements (i.e., singular or nearly singular values) in the matrix G

to be inverted. It is, therefore, very useful to introduce the SVD which enables the complex matrix
G to be decomposed into the following product of the three matrices [23]:

G ¼ USVH ¼
XN

i¼1

uisiv
H
i : ð4Þ

The matrix U is a matrix of left singular vectors ui of the matrix G; and the matrix V is a matrix of
right singular vectors vi of the matrix G: Both matrices U and V are unitary and have the
properties UH ¼ U�1 and VH ¼ V�1: Superscript H denotes Hermitian transpose. The N � N
matrix S is given by

S ¼

s1 0 ? 0 0

0 s2 ? 0 0

^ ^ ^ ^ ^

0 0 ? sN�1 0

0 0 ? 0 sN

2
6666664

3
7777775
; ð5Þ

where the matrix S is diagonal with elements si which comprise the singular values of the matrix
G (i.e., s1Xs2X?XsNX0).

Substituting the transformed Eq. (4) provided by the SVD, and by using the orthonormal
properties of the unitary matrices U and V; the least-squares estimation of the acoustic source
strength can be written as

q ¼ VS�1UH #p ¼
XN

i¼1

uHi #p

si

vi; ð6Þ

where the matrix S�1 is the inverse of the matrix S and is given by

S�1 ¼

1=s1 0 ? 0 0

0 1=s2 ? 0 0

^ ^ ^ ^ ^

0 0 ? 1=sN�1 0

0 0 ? 0 1=sN

2
6666664

3
7777775
: ð7Þ

As can be seen from Eqs. (5) and (7), the very small singular values (compared to the largest
singular value s1) of the matrix S to be inverted will produce large quantities of elements in the
matrix S�1: This effect can introduce large errors into the solution given by Eq. (6). For example,
if the magnitude of juHi #pj is much greater than the associated singular value si in Eq. (6), the
reconstructed source strengths q will be dominated by the terms in the sum corresponding to the
smallest singular value. Hence, as shown in Refs. [6–8,12,13], due to this behaviour of the small
singular values of the matrix G; successful reconstruction of the acoustic source distribution
cannot always be guaranteed by using only the simple least-squares method.

Therefore, in such cases, most numerical methods seek to overcome a problem with very small
singular values in the matrix G by replacing the problem with a nearby well-conditioned problem
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whose solution is a more satisfactory solution than the simple least-squares solution. It is thus
important to appreciate that even when an inverse problem may be ill-conditioned, a useful
solution can still be found by using regularisation.

2.2. Tikhonov regularisation

Briefly, the underlying idea of Tikhonov regularisation is that a regularised solution having a
suitably small residual norm and satisfying additional constraints will be not too far from the
desired, unknown solution. The general form of the error criterion between the true and the
estimated solution can be defined as a weighted linear combination of a squared residual norm
and the additional constraint. This is given by [21,22]

J ¼ jjGq� #pjj2 þ bjjLqjj2 ð8Þ

where the regularisation parameter b controls the weight given to minimisation of the additional
constraint jjLqjj relative to minimisation of the residual norm jjGq� #pjj:

In Eq. (8), when the non-negative definite matrix L is assumed to be the identity matrix I and
the matrix G is assumed to be square matrix ðN � NÞ; it is easy to show [24,25] that the acoustic
source strength qR can be deduced by minimising the error criterion J: The solution that
minimises this error criterion is given by

qR ¼ VS�1
R UH #p ¼

XN

i¼1

s2
i

s2
i þ b

� 	
uHi #p

si

vi; ð9Þ

where subscript R represents the regularised solution and b denotes the chosen regularisation
parameter. The matrix S�1

R is given by

S�1
R ¼

s1=ðs2
1 þ bÞ 0 ? 0

0 s2=ðs2
2 þ bÞ ? 0

^ ^ ^ ^

0 0 ? sN=ðs2
N þ bÞ

2
6664

3
7775: ð10Þ

In Eq. (9), the regularisation factor Rf ð¼ s2
i =ðs

2
i þ bÞÞ has a close connection to the magnitude of

juHi #p=sij and thus prevents the inversion of very small singular values from giving very large terms
in the matrix S�1

R : Therefore, the value of b should be chosen with care since it controls the
properties of the regularised solution. For example, if too much regularisation is imposed, the
result of the reconstruction will not fit the measured complex pressure data properly. On the other
hand, if too little regularisation is used, it will be dominated by the contributions from various
types of errors. Hence, the efficiency of the Tikhonov regularisation method is highly dependent
on the proper choice of the regularisation parameter b that produces a fair balance between the
perturbation error and the regularisation error [6,12–14].
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3. Regularisation parameter-determination methods

3.1. Generalised cross validation and the L-curve method

Briefly, Generalised Cross Validation (GCV) seeks to strike an optimal balance between
perturbation errors and regularisation errors for all valid regularisation parameters. The basis of
the method is that the value of bGCV is sought that minimises the Generalised Cross Validation
function (GCV function) given by

GCV ðbÞ ¼ ð1=NÞjjfI� BðbÞg#pjj2=½ð1=NÞTrfI� BðbÞg�2: ð11Þ

Full details of the derivation of this GCV function are presented in Refs. [4,8]. In Eq. (11), N

denotes the number of measurement positions, Tr denotes the trace (sum of diagonal elements) of
a matrix and BðbÞ denotes the influence matrix defined by BðbÞ ¼ GðGHGþ bIÞ�1GH [4].

The denominator in Eq. (11) evaluates the perturbation errors caused by regularisation with the
addition of b to the error criterion J: Thus, the denominator will become progressively smaller
than unity and will tend to increase GCV ðbÞ as b is increased. The numerator represents the
squared sum of residuals of the regularised solution. Hence, the GCV function evaluates both
the errors in the solution and the inaccuracy introduced into the matrix G to be inverted by the
inclusion of the regularisation parameter chosen. Thus, the regularisation parameter for
the regularised solution qR in Eq. (9) is determined by minimising the above GCV function.
Fig. 1 shows a typical form of the GCV function and a diagrammatic representation of the
regularisation parameter bGCV provided by GCV. Successful applications of GCV to acoustical
inverse problems have been demonstrated in Refs. [4–8,12–14].

Another convenient tool for determining the appropriate regularisation parameters without
prior knowledge is the so-called the L-curve method. The method is a graphical tool with a plot of
the regularised solution against its residual for all valid regularisation parameters. In other words,
the L-curve is a plot of the norm jjLqjj of the regularised solution versus the corresponding
residual norm jjGq� #pjj for all valid regularisation parameters. The principle is based on the fact
that there is a distinct corner which separates the vertical and the horizontal parts of the curve,
when these two quantities are plotted on a log–log scale, as depicted in Fig. 2. The vertical part of
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the L-curve corresponds to perturbations of the regularised solution resulting from contamination
errors, and the horizontal part represents small changes of the regularised solution caused by
regularisation errors [18]. In other words, the horizontal part corresponds to solutions where the
regularisation parameter is too large and the solution is dominated by regularisation errors.
The vertical part corresponds to solutions where the regularisation parameter is too small and the
solution is dominated by contaminating errors magnified by the division by small singular values
during the inversion process. Therefore, the idea of the L-curve criterion for choosing the
regularisation parameter is to determine a point on this curve that is at the ‘‘corner’’ of the vertical
piece as illustrated in Fig. 2.

A computable formula has been suggested for choosing the corner on the L-curve where the
curvature is maximum. This is described in Ref. [20]. Therefore, if the L-curve is twice
continuously differentiable, then it can be straightforward to compute the curvature LðbÞ of the
L-curve by means of the formula [20]

LðbÞ ¼ ð *r0 *Z00 � *r00 *Z0Þ=ðð *r0Þ2 þ ð*Z0Þ2Þ3=2; ð12Þ

where Z ¼ jjqRjj
2; r ¼ jjGqR � #pjj2: Also *Z ¼ log Z; *r ¼ log r and the prime denotes differentiation

with respect to the regularisation parameter b: The appropriate regularisation parameter bLCV

provided by the L-curve method corresponds to the maximum curvature of the L-shaped
appearance. Details of practical applications and calculation tools for the L-curve method have
been presented in Refs. [18–20,26–28].

3.2. An illustrative three-dimensional simulation

In order to demonstrate how the regularisation parameter-determination methods work, some
simulated results are presented of an acoustical radiation problem with the sensor and source
geometry depicted in Fig. 3. This geometry models a planar vibrating surface radiating in an
acoustic field. Here, the planar vibrating surface is modelled as a family of point monopole
sources and the equivalent number of sensors in the field is assumed to sense acoustic pressures
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(here, 9� 9 sensors and sources have been used). Note that measurement errors, which are
simulated by running 500 random trials, were added to the pressure field data. The inter-sensor
spacing rmm is adjusted to be equal to the inter-source spacing rss and the sensor array plane is rms

away from the source array plane. The Green function defining the frequency response
relationship between the acoustic pressure and the associated acoustic source distribution can be
written as

GðkrÞ ¼ ðjor0=2prÞ e�jkr; ð13Þ

where r0 is the density, k is the wavenumber ðk ¼ o=c0 where o is the angular frequency and c0 is
the sound speed) and r denotes the distance from a source to a field point.

In order to evaluate the effectiveness of GCV and the L-curve, when detailed source strengths
to be reconstructed are assumed to be known (here, simply only one point monopole source
located at the centre of the planar source array is assumed to have unit strength), the mean
squared error (MSE) between the known and regularised source strengths for all valid
regularisation parameters is used. Thus, the regularisation parameter bMSE derived from the
estimation of MSE corresponds to the minimum of the MSE function. This is given by [7,8]

bMSE ¼ min
b

½MSEðbÞ� ¼ min
b

½E½ðqR � qT Þ
HðqR � qT Þ��; ð14Þ

where qT represents the vector of the true source strengths which are assumed here to be known.
In Fig. 4(a), firstly, it can be found that two regularisation parameter-determination methods

offer reasonable regularisation parameters based on comparison of magnitudes of bGCV and bLCV

with the magnitude of bMSE for a randomly selected acoustical condition. It is clearly evident from
Fig. 4(b) that the magnitude variation of juHi #pj is properly suppressed by the chosen regularisation
parameters, bGCV and bLCV ; compared to that from the simple least-squares method (i.e., without
regularisation; when b ¼ 0). For example, Figs. 4(c) and (d) show good reconstruction results
produced by using Tikhonov regularisation with bGCV and bLCV : The results for the other
acoustical conditions selected are shown in Figs. 5 and 6. These show that the regularisation
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parameters determined by the two methods still work properly to prevent the ‘‘blow-up’’ in
reconstruction caused by the inversion of very small singular values. Reasonable solutions are
thus produced. It can be also clearly seen that there is good agreement between values for bGCV ;
bLCV and bMSE :

In the simulated results shown, both methods seem to work well in determining the optimal
amount of regularisation. However, it should be mentioned that both methods do not always
produce satisfactory results. For example, the L-curve method often is not convergent under
certain conditions [29,30], i.e., when the magnitude of juHi #pj decays at the same rate or less rapidly
than the associated singular values. Moreover, when the frequency response function matrix G to
be inverted is relatively well-conditioned, the distinct corner corresponding to the maximum
curvature of the L-curve often cannot be seen clearly [4]. On the other hand, in the case
demonstrated in Refs. [27,28], the L-curve method can be a better choice for determining the
proper regularisation parameters than GCV. Furthermore, GCV is likely to fail to provide an
optimal regularisation parameter if errors contaminating the measured data are highly correlated
[17] and some empirical evidence of the possibility has been presented [31]. Also, in some practical
cases for acoustical inverse problems, it has been demonstrated [6,7] that the minima of the GCV
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Fig. 4. Results of the reconstruction for the geometry Fig. 3 with only a single source present when rss=l ¼ 0:25; rms ¼ l
and adding 20% measurement noise: (a) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ; (b) the magnitude

variation of si (circle) and Rf juHi #pj at b ¼ 0 (solid line), b ¼ bGCV (dotted line) and b ¼ bLCV (dashed line);

(c) reconstructed result when b ¼ bGCV ; (d) reconstructed result when b ¼ bLCV :
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functions are not exhibited clearly since the GCV function has a broad flat minimum over a
certain range of valid regularisation parameters.

Hence, in practice, the determination of the proper choice of the regularisation parameter seems
not to be completely straightforward and furthermore there is no universally accepted method.
Therefore, in order to obtain the best possible estimate of the underlying and the unknown
solution, it will be valuable to compare the abilities of these two well-known regularisation
parameter-determination strategies for a wide range of acoustic conditions. The simulated results
presented in the following section may provide useful guidelines.

3.3. Performance comparisons of two regularisation parameter-determination methods

As demonstrated in the previous section, it is clear that the key to producing fine spatial
resolution information of acoustic sources is an effective method for determining the right amount
of regularisation. The section will explore the relationships between estimated accuracy and
spatial resolution, noise-level and source/sensor geometry, when a range of inverse sound
radiation problems is treated using Tikhonov regularisation.
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Fig. 5. Results of the reconstruction for the geometry Fig. 3 with only a single source present when rss=l ¼ 0:5; rms ¼ 5l
and adding 20% measurement noise: (a) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ; (b) the magnitude

variation of si (circle) and Rf juHi #pj at b ¼ 0 (solid line), b ¼ bGCV (dotted line) and b ¼ bLCV (dashed line);

(c) reconstructed result when b ¼ bGCV ; (d) reconstructed result when b ¼ bLCV :
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For the investigation the planar sensor and source array depicted in Fig. 3 has again been used
with the same acoustical conditions, including the Green function described in the previous
section. In addition, a hemispherical sensor array has also been used as an optimal sensor array as
suggested in Refs. [7–9]. This attempt can make the connection between contaminating errors and
the abilities of the two regularisation parameter-determination methods, since the acoustical
inverse problem with the hemispherical sensor array becomes extremely well-conditioned at
certain frequencies.

Firstly, in order to investigate the efficiencies of the methods in determining regularisation
parameters in conjunction with singular value distribution of the matrix G; it is necessary to
observe the behaviour of the condition number kðGÞ of the matrix. Here, the condition number
kðGÞ is widely employed as the most important attribute of the matrix G relating the behaviour of
the small singular values, and is defined by the ratio between the largest and the smallest non-zero
singular values [23]. Fig. 7 shows variations of the condition number kðGÞ for the planar sensor
array and the hemispherical sensor array with respect to the geometrical arrangement of sensors
and sources (i.e., non-dimensional source spacing rss=l and non-dimensional distance rms=rss

between the sensor array and the source array). As the planar sensor array is placed in the field
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Fig. 6. Results of the reconstruction for the geometry Fig. 3 with only a single source present when rss=l ¼ 0:125;
rms ¼ 0:5l and adding 20% measurement noise: (a) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ; (b) the

magnitude variation of si (circle) and Rf juHi #pj at b ¼ 0 (solid line), b ¼ bGCV (dotted line) and b ¼ bLCV (dashed line);

(c) reconstructed result when b ¼ bGCV ; (d) reconstructed result when b ¼ bLCV :
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close to the source surface, it can be clearly seen that the conditioning of the matrix G can be
much improved over the whole range of rss=l: However, as the non-dimensional distance rms=rss

increases, the acoustical inverse problem becomes ill-conditioned, particularly in the region of
small rss=l: Meanwhile, in the case with the hemispherical sensor array (which has the same
number of sensors as the planar sensor array) in the farfield (for example, when the sensors are
located on the hemisphere with radius R where R ¼ 103rss), the problem becomes best conditioned
when rss=l ¼ 1=

ffiffiffi
2

p
and 2=

ffiffiffi
2

p
: In this case, the matrix G has unit condition number and thus the

reconstructed solution will be due to only the contaminating errors without magnification by the
inversion process.

In order to evaluate the performances of the two methods, the regularisation parameters, bGCV

and bLCV ; respectively determined by GCV and the L-curve method, will be compared with bMSE

(which is given by Eq. (14)). This is undertaken for a wide range of acoustical conditions, non-
dimensional source-spacing rss=l where l denotes the acoustic wavelength and level of noise
contamination Er ¼ jej=jð

ffiffiffiffiffiffiffiffi
pHp

p
� eÞj where e is the amplitude of the assumed noise. Firstly,

Figs. 8–10 show the magnitude variations of jDbGCV j
0:5 ð¼ jbGCV � bMSE j

0:5Þ and jDbLCV j
0:5

ð¼ jbLCV � bMSE j
0:5Þ for the planar sensor array over a wide range of non-dimensional source

spacing rss=l and signal to noise ratio Er: Figs. 8(a) and (b) show the results when the planar
sensor array is placed in the field close to the sources, for example when rms is equal to rss (i.e., the
acoustical inverse problem becomes well-conditioned in the whole range of rss=l as shown in
Fig. 7). The magnitude of jDbGCV j

0:5 (i.e., the difference between bMSE and bGCV ) is much smaller
for the whole range of non-dimensional source spacing with a relatively low level of
contaminating noise compared to that of jDbLCV j

0:5 (i.e., the difference between bMSE and
bLCV ). Contrary to this, in the region containing highly contaminating noise (i.e., when Er is
greater than about 0.1), the magnitude of jDbGCV j

0:5 tends to be larger than that of jDbLCV j
0:5;

because GCV provides too small a regularisation parameter as illustrated in Fig. 8(c).
When the planar sensor array is deployed far from the sources, for example when rms equals to

5rss and 10rss as demonstrated in Figs. 9 and 10, the magnitude of jDbGCV j
0:5 is still much smaller

in relatively low levels of contaminating noise for all values of rss=l: However, similarly to the case
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shown in Fig. 8, when problems have very small condition number kðGÞ and the measured
acoustic pressures contain relatively high levels of noise, GCV calculates very small regularisation
parameters as illustrated in Figs. 9(c) and 10(c).

Results are shown in Fig. 11 for the hemispherical sensor array in the farfield (when R ¼ 103rss

where the field points are located on the hemisphere of radius R). In this case, GCV still appears
to be a better choice than the L-curve method at relatively low noise levels. When the problem
becomes optimally conditioned (for example, when rss=l ¼ 1=

ffiffiffi
2

p
and 2=

ffiffiffi
2

p
) with relatively high

noise contamination, the L-curve method can be better for determining the proper regularisation
parameters since GCV provides too small a regularisation parameter compared with bLCV as
shown in Fig. 11(c). However, in the case shown in Fig. 11(d) (when rss=l ¼ 1:2; Er ¼ 0:7 and the
problem becomes relatively ill-conditioned), GCV works well even in the same noise level as that
of Fig. 11(c).
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Fig. 8. Performance comparison of two regularisation parameter-determination methods for the planar sensor array

(9� 9 sensors and sources), when rms ¼ rss: (a) variation of jDbGCV j
0:5 ð¼ jbGCV � bMSE j

0:5Þ; (b) variation of

jDbLCV j
0:5 ð¼ jbLCV � bMSE j

0:5Þ; (c) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ when rss=l ¼ 1:38 and

Er ¼ 0:5:
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As a result of the numerical simulations presented in this section, the L-curve method seems to
be effective particularly when the acoustical inverse problem becomes extremely well conditioned
(i.e., when the solution of the problem is mainly dominated by errors, for example, or when the
sensor array is placed in the field close to the sources or at a certain frequency with optimally
spaced sensors). However, in practice, it is sometimes not so easy to realise the optimal
sensor/source geometry for broadband acoustic sources or very high spatial frequencies.
In such cases, GCV may be a better choice for the determination of the optimal amount of
regularisation.

In addition, GCV works well particularly in acoustical conditions with a relatively low level of
contaminating noise. In other words, it appears from the results that the regularisation parameter
bGCV deduced from GCV is always reasonably close to that for producing minimum mean
squared error except at high noise levels ðErX10�1Þ: The L-curve method on other hand appears
to give a more unpredictable variation from bMSE when noise levels are low.
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Fig. 9. Performance comparison of two regularisation parameter-determination methods for the planar sensor array

(9� 9 sensors and sources), when rms ¼ 5rss: (a) variation of jDbGCV j
0:5 ð¼ jbGCV � bMSE j

0:5Þ; (b) variation of

jDbLCV j
0:5 ð¼ jbLCV � bMSE j

0:5Þ; (c) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ when rss=l ¼ 1:0 and

Er ¼ 0:4:
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4. Experimental verification: reconstruction of volume velocity sources

4.1. Experimental system

Now one moves to a practical demonstration of the guidelines suggested and see how they work
in an experimental application. Firstly, in this section, practical aspects of two regularisation
parameter-determination methods will be related to the spatial resolution and the accuracy of
reconstructed source images. The experimental validation to be presented consists of the
reconstruction of a volume velocity source distribution with regularisation parameters provided
by two different methods from measured farfield data. Subsequently, the capability of the
hemispherical sensor array will be demonstrated experimentally and compared with that of
the planar sensor array.
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Fig. 10. Performance comparison of two regularisation parameter-determination methods for the planar sensor array

(9� 9 sensors and sources), when rms ¼ 10rss: (a) variation of jDbGCV j
0:5 ð¼ jbGCV � bMSE j

0:5Þ; (b) variation of

jDbLCV j
0:5 ð¼ jbLCV � bMSE j

0:5Þ; (c) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ when rss=l ¼ 1:4 and

Er ¼ 0:4:
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A schematic representation of the real volume velocity sources and the source array used is
illustrated in Fig. 12. Similarly to the geometrical arrangement of sources depicted in Fig. 3, a
planar source array is modelled consisting of 5� 5 volume velocity sources with the inter-source
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Fig. 11. Performance comparison of two regularisation parameter-determination methods for the hemispherical sensor

array (9� 9 sensors and sources), when R ¼ 103rss: (a) variation of jDbGCV j
0:5 ð¼ jbGCV � bMSE j

0:5Þ; (b) variation of

jDbLCV j
0:5 ð¼ jbLCV � bMSE j

0:5Þ; (c) when rss=l ¼ 0:7 and Er ¼ 0:7; (d) when rss=l ¼ 1:2 and Er ¼ 0:7: Key for (c) and

(d): J; bMSE ; &; bGCV ; }; bLCV :

Fig. 12. A schematic diagram for the modelled sources.
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spacing, rss ¼ 0:25 m: Two real sources generate the acoustic field, where two small loudspeakers
are mounted on the rear side of a rigid baffle. The details of the real sources, such as their
locations and strengths, are assumed unknown, and thus it is assumed that there are 25 model
sources. The loudspeakers are driven individually by completely different random signals. The
source strength of each real source (for convenience, hereafter this is called ‘‘true source
strength’’) was calibrated by the farfield acoustic pressure #pðoÞ which is measured by the sensors
at a known distance away from the sources. The true source strength is normalised by the
simultaneously measured input voltage V ðoÞ which consisted of a white noise signal for driving
the loudspeakers. This is obtained from

qðoÞ=V ðoÞ ¼ ð1=GðkrÞÞ #pðoÞ=V ðoÞ; ð15Þ

where the same Green function GðkrÞ as in Eq. (13) is used. The procedure is repeated for another
volume velocity source. All experiments have been undertaken in the ISVR anechoic chamber
with dimensions 9:15 m� 9:15 m� 7:32 m:

By using the experimental set-up shown in Fig. 13, farfield acoustic pressures at a planar (5� 5
sensors) and a hemispherical sensor array (which has the same number of sensors as the planar
sensor array) were simultaneously measured. Then, the measured data were stored in 64-channel
digital tape recorder. In order to compare directly with the true source distribution in Eq. (15), all
unknown source strengths to be reconstructed were also normalised by the simultaneously
measured input voltages VðoÞ: The sensors on the hemisphere with radius R ð¼ 2 mÞ were
positioned with the two-dimensional discrete Fourier transform relationships between the
measured farfield pressures and the source distribution. The full details of theoretical
developments for this particular array have been presented in Refs. [7–9]. The 5� 5 planar
sensor array is the same distance 2 m with the radius of the hemispherical sensor array away from
the source plane. The inter-sensor spacing rmm was adjusted to be equal to the inter-source
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Fig. 13. A schematic diagram of the experimental set-up for measurements.
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spacing, rss ¼ 0:25 m: This is equivalent to the projected inter-sensor spacing to the source plane
for the hemispherical sensor array.

4.2. Performance of regularisation parameter-determination methods

Measurements for experimental reconstruction of the volume velocity source distribution have
been undertaken with the experimental models described in the previous section. In the
experimental reconstruction process, the analytical Green function given by Eq. (13) has been
used for frequency response relations between the farfield pressures and the source distribution.
Firstly, Fig. 14 illustrates the condition number kðGÞ of the frequency response function matrices
G for two experimental models. As shown in this figure, the experimental model with the
hemispherical sensor array maintains better conditioning of the matrix G in the region of
relatively small rss=l: Furthermore, when the inter-source spacing rss ¼ l=

ffiffiffi
2

p
; the problem

becomes best conditioned and thus the sensor array has the least sensitivity to contaminating
noise.

It is valuable to view the effectiveness of the two regularisation parameter-determination
methods examined in Section 3 when they are applied to the experimental reconstruction process.
Reconstruction results are compared under the same conditions which are produced with the two
different types of sensor array (i.e., the planar and the hemispherical sensor array). Firstly, Fig. 15
shows mean squared errors (MSE) between the reconstructed source distribution produced by
Tikhonov regularisation and the true source distribution measured directly, when only one real
source generates an acoustic field out of a total of the 25 modelled sources depicted in Fig. 12. For
the true source distribution, the strengths of the modelled sources are assumed to be equal to zero
except for one real source. In this figure, it is clear that the accuracy of the reconstructed result for
the real source is largely improved by Tikhonov regularisation with the regularisation parameters,
bGCV and bLCV ; compared with simple least-squares estimation (i.e., when b ¼ 0; without
regularisation). Furthermore, it can be seen that the optimally spaced sensors, for example here
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Fig. 14. Condition number variations of the frequency response function matrices for the experimental models: planar

sensor array (dotted line), hemispherical sensor array (solid line).
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the hemispherical type sensors, provide better resolution and accuracy of reconstructed source
distribution particularly in the region of relatively small rss=l:

In order to compare directly the abilities of the two regularisation parameter-determination
methods considered here, mean squared errors of reconstructed source distribution produced by
Tikhonov regularisation with bGCV and bLCV are shown in Fig. 16. The radiated sound field,
which is measured with the hemispherical sensor array in the farfield, is generated by only one real
acoustic source at an unknown position. In this case, GCV appears to give a better choice of
regularisation parameter for reconstruction than the L-curve method since the mean squared
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Fig. 15. Reconstructed source strengths produced by the two regularisation parameter-determination methods, when

the radiated field is generated by only one real acoustic source for (a) Tikhonov regularisation with bGCV : dotted line,

planar sensor array ðb ¼ 0Þ; dashed line, planar sensor array ðb ¼ bGCV Þ; solid line, hemispherical sensor array ðb ¼
bGCEÞ; and (b) Tikhonov regularisation with bLCV : dotted line, planar sensor array ðb ¼ 0Þ; dashed line, planar sensor

array ðb ¼ bLCV Þ; solid line, hemispherical sensor array ðb ¼ bLCV Þ:

Fig. 16. Performance comparison of the two regularisation parameter-determination methods, when the radiated field,

which is measured with the hemispherical sensor array, is generated by one real acoustic source: (a) mean squared errors

produced by Tikhonov regularisation with GCV and the L-curve method (solid line, b ¼ bGCV ; dotted line, b ¼ bLCV Þ;
(b) magnitude variations of the condition number and the regularisation parameters (solid line, b ¼ bGCV ; dotted line,

b ¼ bLCV ; dashed line, kðGHÞÞ:
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errors of the reconstructed source distribution with bGCV are smaller over a wide range of non-
dimensional source spacing rss=l: However, as shown in Fig. 16(b), GCV provides very small
regularisation parameters at certain non-dimensional source spacings. Interestingly, these non-
dimensional source spacings rss=l are the same values as the experimental model with the
hemispherical sensor array becoming optimally conditioned (i.e., kðGHÞE1 when rss=l ¼ 0:5). In
such cases, the solution will be dominated completely by errors since the problem becomes
extremely well conditioned. Similar trends have been found in the simulation results shown in
Figs. 11(b) and (c) under similar conditions although the geometry for the experimental model
does not agree exactly with the simulated model.

In more detail, when, for example rss=l ¼ 0:693 in Fig. 16(b), GCV computes too small a
regularisation parameter compared with bMSE as shown in Fig. 17(a) and thus results in
producing an ‘‘under-regularised’’ source strength provided by bGCV : For example, as illustrated
in Fig. 17(b), the strength of the unknown source reconstructed in magnitude is larger than that
produced with bLCV in Fig. 17(c), even though the location of unknown real source can be
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Fig. 17. Reconstruction results produced by Tikhonov regularisation, when rss=l ¼ 0:693 ð925:8 HzÞ and the radiated

field, which is measured with the hemispherical sensor array, is generated by only one real acoustic source:

(a) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ; (b) source distribution at b ¼ bGCV ; (c) source

distribution at b ¼ bLCV ; (d) true source distribution.
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revealed by the use of bGCV compared with the true source distribution in Fig. 17(d). However, in
contrast to the results in Fig. 17, when rss=l ¼ 0:912 in Fig. 18, GCV can be a better method for
the determination of the regularisation parameter. This results in demonstrating very accurate
reconstructions as illustrated in Fig. 18(b) compared with that for true source distribution as
shown in Fig. 18(d).

As shown in Fig. 19, when the radiated sound field is generated by two real acoustic sources,
similar trends to the case with one real source can be found. In other words, GCV predicts too
small a regularisation parameter when the problem becomes well conditioned. It is clearly evident
from Fig. 20 that in this case the small magnitude of bGCV produces an under-regularised
reconstruction of source distribution when the problem has very small condition number kðGHÞ
afforded with the hemispherical sensor array. However, as shown in Fig. 21, in other cases GCV
produces more successful reconstruction results than the L-curve method as a result of the proper
determination of bGCV :

In the cases for the planar sensor array with one real source (Fig. 22(a)) and two real sources
(Fig. 22(b)), similarly to the case for the hemispherical sensor array, GCV seems to be more

ARTICLE IN PRESS

Fig. 18. Reconstruction results produced by Tikhonov regularisation, when rss=l ¼ 0:912 (1218:8 Hz) and the radiated

field, which is measured with the hemispherical sensor array, is generated by only one real acoustic source:

(a) comparison between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ; (b) source distribution at b ¼ bGCV ; (c) source

distribution at b ¼ bLCV ; (d) true source distribution.
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Fig. 19. Magnitude variations of the condition number and the regularisation parameters, when the radiated field,

which is measured with the hemispherical sensor array, is generated by one real acoustic source (solid line, b ¼ bGCV ;
dotted line, b ¼ bLCV ; dashed line, kðGHÞÞ:

Fig. 20. Reconstruction results produced by Tikhonov regularisation, when rss=l ¼ 0:693 (925:8 Hz) and the radiated

field, which is measured with the hemispherical sensor array, is generated by two real acoustic source: (a) comparison

between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ; (b) source distribution at b ¼ bGCV ; (c) source distribution at b ¼ bLCV ;
(d) true source distribution.
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Fig. 22. Magnitude variations of the condition number and the regularisation parameters determined by GCV and the

L-curve method for the planar sensor array (a) when the radiated field is generated by one real source and (b) when the

radiated field is generated by two real sources. Key: solid line, b ¼ bGCV ; dotted line, b ¼ bLCV and dashed line, kðGPÞ:

Fig. 21. Reconstruction results produced by Tikhonov regularisation, when rss=l ¼ 0:912 (1218:8 Hz) and the radiated

field, which is measured with the hemispherical sensor array, is generated by two real acoustic sources: (a) comparison

between bMSE ðJÞ; bGCV ð&Þ and bLCV ð}Þ; (b) source distribution at b ¼ bGCV ; (c) source distribution at b ¼ bLCV ;
(d) true source distribution.
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robust than the L-curve in the region with relatively high condition number kðGPÞ of the planar
sensor array. But GCV fails to provide proper regularisation parameters in the region mainly
dominated by errors since the chosen regularisation parameters are too small. Conversely, the
L-curve method works well particularly in the regions completely dominated by measurement
errors.

Therefore, based on the results presented, there seems to be no best method for determining
proper regularisation parameters in all situations. However, in the cases investigated, GCV can be
more reasonable when the problem becomes relatively ill-conditioned with contaminating noise,
whilst the L-curve method may provide an effective method when the reconstructed results are
mainly dominated by noise contamination.

5. Conclusions

An approach based on SVD has been applied for dealing with acoustical inverse problems when
cast in the form of a Tikhonov regularisation problem. The abilities of two different methods,
GCV and the L-curve method, for the determination of the proper degree of regularisation have
been simulated for a wide range of acoustical conditions in conjunction with sensor and source
geometries. Based on the results of the numerical simulations, it appears that GCV may be a
better choice for estimating optimal regularisation parameters since GCV provides a more
reasonable amount of regularisation for ill-conditioned problems when noise levels are relatively
low. However, the L-curve method seems to be a more effective method when the problem is
relatively well-conditioned and the reconstruction result is mainly dominated by errors such as
contaminating noise. The results of the numerical simulations have also been experimentally
demonstrated under laboratory conditions. Therefore, even though the cases investigated in this
paper demonstrate that there is no absolutely better method, the results presented here may
become useful guidelines for the right choice of regularisation parameter-determination method in
real-world applications. It has also been shown however, that the optimally arranged sensor array
suggested gives far superior results to those produced by a planar sensor array spanning an
equivalent dimension.
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